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Abstract

The present work investigates the response of half–full horizontal cylindrical vessels under external excitation in the

transverse direction. A two dimensional mathematical model is developed to describe sloshing effects in rigid vessels.

The velocity potential is expressed in a series form, where each term is the product of a time function and the associated

spatial function. In this geometrical configuration the spatial functions are not orthogonal and the problem is not

separable. Application of the boundary conditions results in a system of ordinary linear differential equations, which

are solved numerically. Sloshing frequencies of half–full horizontal cylinders are computed, and hydrodynamic forces

are calculated. Under harmonic excitation, the formulation results in a system of linear equations, allowing for a semi-

analytical solution. A simplified version of the mathematical model is also developed, which considers the first two

terms of the series and results in an elegant solution. Furthermore, assuming a beam-type deformation of the container,

the simplified formulation can be extended to approximate the coupled response of the container-liquid system. Using

this formulation, the response of a typical pressure vessel under ground-motion excitation is calculated and the effects

of wall deformation are demonstrated.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The presence of a free surface in partially filled liquid containers allows for fluid motions relative to the container.

This phenomenon, referred to as ‘‘liquid sloshing’’, is generally caused by external tank excitation (e.g. by an

earthquake), and may have a significant influence on the response of the container.

Sloshing has been often considered as a typical linear eigenvalue problem, which represents the oscillations of the free

surface of an ideal liquid inside a stationary container. The solution provides the natural frequencies of fluid oscillation

(sloshing frequencies) and the corresponding sloshing modes, and depends strongly on the shape of the container. In the

case of externally excited container, sloshing becomes a transient problem, and its solution provides the fluid motion

with respect to the container, as well as the time history of hydrodynamic pressures and forces on the container wall. In

both problems, assuming ideal fluid, the fluid flow is described through a velocity potential function satisfying the

Laplace equation within the fluid, the kinematic condition on the tank wall, and the kinematic and dynamic free-surface

conditions.

For nondeformable rectangular and vertical cylindrical containers, the sloshing problem can be solved analytically,

using separation of variables, and the corresponding sloshing modes are mutually orthogonal and uncoupled. For other
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geometries (e.g. horizontal cylinders or spheres) exact analytical solutions may not be available, and the use of

numerical methods becomes necessary. Budiansky (1960) has examined sloshing effects in nondeformable circular

canals, and reported numerical values of modal frequencies and hydrodynamic forces. Moiseev and Petrov (1966)

described the application of Ritz variational method for the numerical calculation of sloshing frequencies in vessels of

various geometries, including the case of a horizontal cylindrical container. Fox and Kuttler (1981, 1983) obtained

upper and lower bounds for the values of sloshing frequencies in a semi-circular canal using conformal mapping and the

method of intermediate problems. McIver (1989) considered horizontal cylindrical containers, filled up to an arbitrary

height, reformulating the eigenvalue-sloshing problem in terms of integral equations, which were solved numerically.

More recently, McIver and McIver (1993) presented analytical methods to obtain upper and lower bounds of sloshing

frequencies in horizontal cylinders.

Generally, the analysis of sloshing in horizontal cylindrical and spherical vessels filled up to an arbitrary height

requires a numerical solution. However, for the particular case of a half–full horizontal cylinder and sphere it is possible

to develop an analytical solution. Evans and Linton (1993) presented a series-type (semi-analytical) solution of the

eigenvalue-sloshing problem in half–full horizontal cylindrical containers and half–full spherical vessels, expanding

the velocity potential in terms of nonorthogonal bounded harmonic spatial functions. In a recent publication

(Papaspyrou et al., 2003), the solution of Evans and Linton (1993) was extended to calculate sloshing effects in

externally excited half–full spheres.

The present work is aimed primarily at calculating sloshing effects in half–full horizontal cylindrical containers under

external excitation in the transverse direction, extending the analytical formulation of Evans and Linton (1993). In

particular, the main objective of the paper is the solution of externally induced liquid sloshing in half–full cylinders

under transverse excitation, through a semi-analytical manner, without implementing finite difference or finite element

approximations. Expanding the velocity potential in bounded series in terms of arbitrary time functions and their

associated nonorthogonal spatial functions, a system of ordinary linear differential equations is obtained and,

subsequently, hydrodynamic pressures and forces are computed for arbitrary external excitation. The particular case of

harmonic excitation is examined. Dissipation effects are also taken into account in the form of a Rayleigh damping

matrix. In addition, a simplified methodology is developed considering only the first two terms of the series, which

yields a linear oscillator equation and gives rise to an equivalent mechanical model.

Furthermore, the present study is aimed at estimating the effects of container–wall deformation on the overall

response. Wall deformation effects have been studied extensively in the case of vertical cylinders. Those works have

assumed that wall deformation affects only the ‘‘impulsive’’ part of the motion describing the motion of the container

through either simple assumed-shape functions (Veletsos and Yang, 1977; Fischer, 1979), or more elaborate shell

models (Chu, 1963; Haroun and Housner, 1981; Haroun, 1983; Natsiavas, 1988; Rammerstorfer et al., 1990; Gupta,

1995). On the other hand, the effects of wall deformation on the response of horizontal cylinders have not been

investigated. In industrial applications, those vessels are rather thick to resist high internal pressure and, therefore,

shell-type vibration modes may not be significant. However, relatively long horizontal cylindrical vessels (L/RX10),

quite common in petrochemical industries and refineries, exhibit a beam-type deformation, which may affect the overall

response under transverse excitation. Using the aforementioned simplified sloshing formulation and considering an

assumed-shape beam-type approach for cylinder deformation, it is possible to estimate the response of the coupled

container–liquid system for half–full deformable containers under transverse excitation.

2. Sloshing under transverse excitation

The fluid is contained in a half–full horizontal cylindrical vessel of radius R, with the y-axis of the coordinate system

xyz pointing vertically downwards (Fig. 1), and the geometry is described in terms of the cylindrical coordinates r, y, z.

The container undergoes an arbitrary motion in the direction of the x-axis with displacement X(t). For the purposes of

the present sloshing formulation, the vessel is assumed rigid (nondeformable). Wall deformation effects are considered

in the next section.

2.1. Problem formulation

Assuming inviscid fluid, the flow is described by a velocity potential function Fðr; y; z; tÞ; which satisfies Laplace

equation within the fluid volume:

r2F ¼
1

r

@

@r
r
@F
@r

� �
þ

1

r2
@2F

@y2
þ

@2F
@z2

¼ 0; roR;�p=2oyop=2; 0ozoL: ð1Þ
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The free-surface elevation is assumed to be sufficiently small to allow linearization of the problem, so that F is subjected

to the linearized dynamic and kinematic free-surface conditions

@F
@t

� gZ ¼ 0 at y ¼ 7p=2; roR; 0ozoL ð2Þ

and

7
1

r

@F
@y

þ
@Z
@t

¼ 0 at y ¼ 7p=2; roR; 0ozoL; ð3Þ

respectively, where g is the gravitational constant and Z=Z (r,z,t) is the free-surface elevation. Combination of Eqs. (2)

and (3) leads to the following mixed boundary condition:

@2F
@t2

7
g

r

@F
@y

¼ 0 at y ¼ 7p=2; roR; 0ozoL: ð4Þ

Assuming external excitation along the (transverse) x-axis, the sloshing potential should satisfy the kinematic condition

at the container walls

@F
@r

¼ ’XðtÞ sin y at r ¼ R;�p=2oyop=2; 0ozoL ð5Þ

and

@F
@z

¼ 0 at z ¼ 0;L;�p=2oyop=2; 0oroR: ð6Þ

Subsequently, F is decomposed in two parts:

Fðr; y; z; tÞ ¼ jU ðr; y; z; tÞ þ *jðr; y; z; tÞ; ð7Þ

where jU(r,y,z,t) and *jðr; y; z; tÞ are the ‘‘uniform motion’’ velocity potential and the potential related to sloshing,

respectively. The velocity potential jU corresponds to a rigid-body motion of the fluid, which follows exactly the

motion of the external excitation source, and the velocity potential *j represents the relative motion of fluid within the

container due to sloshing. The uniform motion potential jU is taken as

jU ¼ ’XðtÞx ¼ ’XðtÞr sin y; ð8Þ

which satisfies the Laplace equation (1), and the kinematic condition (5) at the container wall r ¼ R: Thus, the unknown
potential *j associated with sloshing, should satisfy the Laplace equation within the fluid region and the following

boundary conditions:

@2 *j
@t2

7
g

r

@ *j
@y

¼ �
@2jU

@t2
at y ¼ 7p=2; roR; 0ozoL ð9Þ
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Fig. 1. Configuration of half–full horizontal cylinder; excitation X(t) is considered in the transverse direction (axis x).
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@ *j
@r

¼ 0 at r ¼ R;�p=2oyop=2; 0ozoL ð10Þ

and

@ *j
@z

¼ 0 at z ¼ 0;L;�p=2oyop=2; 0oroR: ð11Þ

Then the velocity potential *j is written as

*jðr; y; z; tÞ ¼
XN
p¼0

*jpðr; y; tÞ cos
ppz

L

� �
; roR;�p=2oyop=2; 0ozoL; ð12Þ

thereby ensuring that boundary condition (11) is satisfied provided p=0,1,2,3,y . Considering the boundary condition

(10), it can readily be shown that, due to the type of external excitation, only the term corresponding to the mode p=0 is

nonzero (i.e. the term which is constant with respect to z), while all other terms (p=1,2,3,y) vanish. Thus, the initial

problem reduces to a strictly two dimensional problem consisting of calculating a velocity potential j ¼ *j0ðr; y; tÞ;
which satisfies the Laplace equation in a lower half-disk, the mixed boundary condition at the free surface,

@2j
@t2

7
g

r

@j
@y

¼ �
@2jU

@t2
; y ¼ 7p=2; roR; ð13Þ

and the kinetic boundary condition at the container wall,

@j
@r

¼ 0; at r ¼ R;�p=2oyop=2: ð14Þ

2.2. Sloshing solution

A solution for the unknown function j is considered in a series form as

j ¼
XN
n¼1

’qnðtÞjnðr; yÞ ¼
XN
n¼1

’qnðtÞrn sinðnyÞ; roR;�p=2oyop=2; ð15Þ

where qnðtÞ are unknown arbitrary time functions, and jnðr; yÞ ¼ rn sinðnyÞ are the corresponding spatial functions. For

the purposes of the present study, motivated by the methodology of Evans and Linton (1993), the expression for the

unknown potential is rewritten in the following form:

jðr; y; tÞ ¼
XN
n¼1

½ ’q2n�1ðtÞr2n�1 sinð2n � 1Þyþ ’q2nðtÞr2n sinð2nyÞ�; ð16Þ

separating odd and even terms of the series. Substituting Eqs. (16) and (8) into Eq. (13) and equating terms of equal

power in r the following relations are obtained:

q2ðtÞ ¼
1

2g
q̈1ðtÞ þ

1

2g
ẌðtÞ ð17Þ

and

q2nðtÞ ¼
1

2ng
q̈2n�1ðtÞ; for n > 1: ð18Þ

Eqs. (17) and (18) are substituted back into Eq. (16) and then applying the boundary condition at the container wall,

expressed by Eq. (14), the following equation is obtained:XN
n¼1

R2n�1

g
sinð2nyÞq̈2n�1ðtÞ þ ð2n � 1ÞR2n�2 sinð2n � 1Þyq2n�1

� �
¼ �

R

g
sinð2yÞẌðtÞ: ð19Þ

Subsequently, applying the integral operator

Is ¼
Z p=2

0

ysinð2s � 1Þy dy; s ¼ 1; 2; 3y; ð20Þ

on Eq. (19) and conducting some mathematical manipulations, the following infinite system of second-order ordinary

linear differential equation is obtained:

½M�fq̈g þ ½K�fqg ¼ �fggẌ: ð21Þ
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In Eq. (21), [M] is a nonsymmetric square matrix, [K] is a diagonal matrix, and {g} is a vector, where

Msn ¼
2nð�1Þnþs

n2 � ðs � 1=2Þ2
R2n�1; n ¼ 1; 2; 3y and s ¼ 1; 2; 3y; ð22Þ

Knn ¼ ð2n � 1ÞpgR2n�2; n ¼ 1; 2; 3y; ð23Þ

gs ¼
8ð�1Þsþ1

3þ 4s � 4s2
R; s ¼ 1; 2; 3y; ð24Þ

and {q} is the unknown vector with components q2n�1ðtÞ; n ¼ 1; 2;y .

The system of Eqs. (21) expresses the dynamic equilibrium of the system, where {q} is the vector of unknown

generalized coordinates, [M] and [K] may be considered as the mass and stiffness matrices of the system, respectively,

and {g} is the vector expressing the contribution (participation) of external excitation on the dynamic equilibrium.

Upon numerical solution of the truncated system of Eqs. (21) in terms of q2n�1ðtÞ; functions q2nðtÞ should be

determined, so that the potential j associated with sloshing is completely defined. To calculate functions q2n(t), it is

straightforward to use Eqs. (17) and (18), which express q2n(t) in terms of q̈2n�1ðtÞ and the acceleration of the external

excitation ẌðtÞ: Implications may arise when the second derivatives of q2n(t) are calculated, to compute hydrodynamic

pressure and forces (as described in Section 2.3). This requires calculation of the fourth derivatives of q2n�1ðtÞ and X(t).

In the case of an irregular function ẌðtÞ (e.g. a seismic ground motion), q̈2n�1ðtÞ are also irregular functions, containing

very sharp variations within very small time intervals, and their numerical differentiation may lead to erroneous results.

It is possible to avoid such a numerical difficulty, under the observation that vector {g} consists of the same elements

with the first column of matrix [M]. Therefore, Eqs. (21) can be written as follows:

½M�fQ̈g þ ½K�fqg ¼ f0g; ð25Þ

where

fQ̈g ¼

q̈1 þ Ẍ

q̈3

q̈5

^

2
6664

3
7775: ð26Þ

On the other hand, Eqs. (17) and (18) can be written as

f %qg ¼
1

2ng
fQ̈g; ð27Þ

where f %qg is a vector with components q2n(t), n=1,2,3y . Combining Eqs. (25) and (27), vector f %qg is calculated as

follows:

f %qg ¼ �
1

2ng
½M��1½K�fqg: ð28Þ

Thus, functions q2n(t) are calculated algebraically from functions q2n�1(t), and the double differentiation of q2n(t)

becomes a trivial procedure, since the second derivatives of q2n�1(t) are obtained from the solution of Eqs. (21).

To account for dissipation effects, a damping term proportional to the first derivative of the generalized coordinates

is introduced in Eqs. (21), so that

½M�fq̈g þ ½C�f ’qg þ ½K�fqg ¼ �fggẌ: ð29Þ

In the above equations, [C] is a square matrix, herein considered in the form of a Rayleigh damping matrix

½C� ¼ @0½M� þ @1½K�; ð30Þ

where q0 and q1 are constants.

It is interesting to note that in previous works, a different approach was proposed to model damped free-surface

systems [Faltinsen (1978); Isaacson and Subbiach (1991)], which enables the use of potential theory and introduces a

damping term proportional to the potential related to sloshing in the dynamic boundary condition at the free surface:

@F
@t

þ n *j� gZ ¼ 0 at y ¼ 7p=2; roR; 0ozoL: ð31Þ

The second term on the left-hand side represents a force, which opposes particle velocity, and the proportionality

constant n is a viscosity coefficient. If boundary condition (31), instead of (2), is implemented in the present
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formulation, it results in a system of ordinary differential equations identical to that of Eq. (29), with ½C� ¼ v½M�;
a special form of Rayleigh damping.

2.3. Hydrodynamic pressures and forces

Once the velocity potential j associated with sloshing is calculated, the hydrodynamic pressure at any location can be

computed from the linearized Bernoulli equation and the total horizontal force acting on the container is obtained by

an appropriate integration of the pressure on the hemispherical wall. The total hydrodynamic force fT on the container

wall is the sum of the ‘‘uniform motion’’ force fU, the force associated with sloshing fS and the container’s inertia force

fC given by

fU ¼ �r
Z

A

@jU

@t
ðex � nÞ dA; ð32Þ

fS ¼ �r
Z

A

@j
@t
ðex � nÞ dA ð33Þ

and

fC ¼ �mCẌðtÞ; ð34Þ

respectively, where r is the fluid mass density, A is the wet surface of the cylinder, and mC is the mass per unit length of

the cylindrical container. Using Eqs. (8) and (16), fU and fS are calculated as follows:

fU ¼ �rẌðtÞR2

Z L

0

Z p=2

�p=2
sin2 y dy dz ¼ � r

pR2

2

� �
ẌðtÞ ¼ �mLẌðtÞ; ð35Þ

fS ¼ �rR2
XN
n¼1

R2n�2 q̈2n�1ðtÞY2n�1 þ Rq̈2nðtÞY2n½ �; ð36Þ

where mL ¼ rpR2=2 is the liquid mass per unit length of the half–full horizontal cylinder container, and

Yk ¼
Z p=2

�p=2
sinð2kyÞ sin y dy ¼ ð�1Þkþ1 4k

4k2 � 1
; k ¼ 1; 2; 3y : ð37Þ

Since the pressure is always normal to the wall of the container, the total hydrodynamic force direction always passes

through the center of the cross-section of horizontal cylinder.

3. Simplified analysis and fluid–vessel interaction

The problem formulation of a half–full container response is significantly simplified if only the first two terms of the

series solution are considered [Eq. (16) with n=1]. In such a case, an approximate solution is obtained and sloshing is

described in terms of a linear oscillator, which gives rise to an equivalent mechanical model. Using this solution and an

assumed-shape for the deformation of the vessel, the coupled response of the interacting liquid–vessel system can be

estimated.

3.1. Simplified sloshing solution

It is assumed that the sloshing potential j is given, instead of Eq. (16), by the following approximate expression:

jðr; y; tÞ ¼ ’q1r sin yþ ’q2r2 sin 2y: ð38Þ

Applying the boundary conditions, the system of ordinary differential equations (21) reduces to only one equation:

q̈1 þ
3pg

8R

� �
q1 ¼ �Ẍ; ð39Þ

which is a linear oscillator equation. The frequency of the oscillator oS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pg=8R

p
offers an approximation of the first

sloshing frequency of the system. Once q1ðtÞ is computed from Eq. (39), function q2ðtÞ is calculated by

q2 ¼ �
3p
16R

� �
q1: ð40Þ
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Dissipation effects may be introduced through a damping term in Eq. (39),

q̈1 þ 2oSxS ’q1 þ o2
Sq1 ¼ �Ẍ; ð41Þ

where xS is the damping ratio.

Conducting an appropriate integration as indicated by Eq. (33), a simple expression is obtained for the sloshing force:

fS ¼ �ðmL=2Þq̈1 ¼ �mSq̈1; ð42Þ

where mS is half the liquid mass per unit length mL, and it is referred to as ‘‘sloshing’’ mass. The total horizontal force fT

is the sum of the force associated with sloshing fS, the force due to uniform motion of the liquid fU, and the inertia force

of the container fC so that

fT ¼ �mT Ẍ � mSq̈1; ð43Þ

where

mT ¼ mL þ mC ð44Þ

is the total moving mass of the liquid–vessel system. Furthermore, using the following change of variable:

u ¼ q1 þ X ; ð45Þ

the total force expression in Eq. (43) becomes

fT ¼ �mI Ẍ � mSü; ð46Þ

where

mI ¼ mT � mS : ð47Þ

Eqs. (41), (45) and (46) motivate the consideration of an equivalent mechanical model shown in Fig. 2, for the

response of a semi-circular disk under transverse excitation. The model is similar to mechanical models proposed

elsewhere for rectangular and vertical cylindrical tanks (Abramson, 1966). Function u(t) corresponds to the so-called

‘‘convective’’ motion and the corresponding mass mS is the ‘‘convective’’ or ‘‘sloshing’’ mass. The other mass mI

represents the so-called ‘‘impulsive’’ mass and expresses the mass accelerating with the external source.

3.2. Application: simplified fluid–vessel interaction

Based on the simplified sloshing solution presented in the previous section, and considering a beam-type deformation

of the cylindrical vessel, it is possible to develop an approximate formulation for the coupled response of the fluid–vessel

system.

Motivated by practical applications, the cylindrical vessel is considered rather long (with length-to-radius ratio

L/RX10) and thick (with radius-to-thickness ratio R/hp100), so that it exhibits a beam-type deformation while its

cross-section remains circular (undeformed). Thus, the motion of the cylindrical container is directly determined by the

motion of the cylinder axis, which is decomposed in two parts (Fig. 3), the motion of the supports Xg(t), independent of

z coordinate, and the motion due to the deformation of the container described by a function y(z,t):

X ðz; tÞ ¼ XgðtÞ þ yðz; tÞ: ð48Þ
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An admissible function c(z) is considered for the container deformation:

yðz; tÞ ¼ cðzÞDðtÞ; ð49Þ

and

X ðz; tÞ ¼ XgðtÞ þ cðzÞDðtÞ; ð50Þ

so that the deformable vessel becomes a generalized single-degree-of-freedom system. In such a case the vessel

undergoes a nonuniform motion with respect to the z coordinate and the sloshing solution is three dimensional.

Nevertheless, in the majority of practical applications, the sloshing frequency oS is significantly smaller than the

fundamental frequency of the container and, therefore, it is assumed that the two dimensional sloshing solution for the

rigid container, as expressed by Eq. (41), is still valid for every cross-section. Consequently, for the cross-section

corresponding to coordinate z, the following equation is considered:

@2q1

@t2
þ 2xSoS

@q1

@t
þ o2

Sq1 ¼ �
@2X

@t2
; ð51Þ

where q1=q1(z,t). From Eqs. (48)–(50), the unknown sloshing function q1(z,t) is the sum of two parts, one

corresponding to the ground motion qg(t), and the other q(t) corresponding to the tank motion relative to the ground

motion,

q1ðz; tÞ ¼ qgðtÞ þ cðzÞqðtÞ; ð52Þ

so that the unknown functions qg(t) and q(t) satisfy the following equations:

q̈g þ 2xSoS ’qg þ o2
Sqg ¼ �Ẍg; ð53Þ

q̈ þ 2xSoS ’q þ o2
Sq ¼ � .D: ð54Þ

In the present formulation, q(t) expresses the effects of wall deformation on sloshing, as indicated in Eq. (54).

Furthermore, from Eq. (43), the total lateral force per unit length of the cylinder at cross-section z is

fT ðz; tÞ ¼ �mS
@2q1

@t2
� mT

@2X

@t2
¼ �mSq̈g � mT Ẍg � mScðzÞq̈ � mTcðzÞ .D: ð55Þ

Equilibrium of the beam requires that

EI
@4y

@z4

� �
¼ fT ðz; tÞ; ð56Þ

where EI is the bending stiffness of the beam-like cylinder. Using an arbitrary admissible function w(z) and assuming

that the cylinder is simply supported at the two ends (z=0 and z=L), the weak form of the above equilibrium equation

is obtainedZ L

0

EI y00ðz; tÞw00ðzÞ dz ¼
Z L

0

fT wðzÞ dz; ð57Þ

where ( )0 0 denotes double differentiation with respect to z. In the context of a Galerkin-type solution procedure, the

trial function is approximated as follows:

wðzÞ ¼ AwcðzÞ; ð58Þ

ARTICLE IN PRESS

z

x

z=Lz=0

z

x

z=Lz=0

deformed cylinder axis

Xg(t)

undeformed cylinder axis

ψ(z)∆(t)

Fig. 3. Schematic representation of beam-type deformation of horizontal cylinder, simply supported at z=0 and L.
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where Aw is an arbitrary number. Using Eqs. (55) and (57), the following dynamic equilibrium equation is obtained:

KbD ¼
Z L

0

fTcðzÞ dz ¼ �MSq̈g � MT Ẍg � M 0
Sq̈ � M 0

T
.D; ð59Þ

where the ‘‘generalized masses’’ MS ; MT ; M 0
S and M 0

T ; and the ‘‘generalized bending stiffness’’ Kb are given by the

following expressions:

MS ¼
Z L

0

mScðzÞ dz; MT ¼
Z L

0

mTcðzÞ dz; M 0
S ¼

Z L

0

mSc
2ðzÞ dz;

M 0
T ¼

Z L

0

mTc
2ðzÞ dz; Kb ¼

Z L

0

EIc002ðzÞ dz: ð60Þ

In Eqs. (60), EI and mT are constant along the cylinder, because of constant cylinder thickness. Furthermore, EI and mT

can be evaluated as follows:

EICEp R þ
h

2

� �3

h; ð61Þ

mTCmL þ 2rCpðR þ hÞh; ð62Þ

where E and rC are the elasticity modulus and the mass density of the container material, and h is the thickness of the

container wall. Structural damping can be introduced through a term proportional to ’D; so that

MSq̈g þ MT Ẍg þ M 0
Sq̈ þ M 0

T
.Dþ Cb

’Dþ KbD ¼ 0; ð63Þ

where Cb is a damping coefficient. The three Eqs. (53), (54) and (63) may be written in the following matrix form:

½M�Q þ ½C�Q þ ½K�Q ¼ �fTgẌg; ð64Þ

where

½M� ¼

1 0 0

0 1 1

MS M 0
S M 0

T

2
64

3
75; ½C� ¼

2xSoS 0 0

0 2xSoS 0

0 0 Cb

2
64

3
75;

K½ � ¼

o2
S 0 0

0 o2
S 0

0 0 Kb

2
64

3
75; Tf g ¼

1

0

MT

2
64

3
75 and Q ¼

qg

q

D

2
64

3
75; ð65Þ

which can readily be solved for the unknown functions, qg(t) q(t) and D(t). Subsequently, the total horizontal force on
the vessel wall is computed as follows:

FT ¼
Z L

0

fT ðz; tÞ dz ¼ �ðmSLÞq̈g � ðmT LÞẌg � MSq̈ � MT
.D: ð66Þ

Note that in the case of a nondeformable container, the third and the fourth term on the right-hand side vanish, and the

above equation reduces to Eq. (43).

The three natural frequencies o(i) of the undamped coupled fluid–vessel system (xS=xb=0) are the roots of the

following equation:

detð½K� � o2½M�Þ ¼ 0; ð67Þ

and their analytic expressions are

o2
ð1Þ ¼ o2

S ; ð68Þ

o2
ð2Þ;ð3Þ ¼

Kb

2ðM 0
T � M 0

SÞ
1þ

o2
S

o2
b

� �
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o2
S

o2
b

� �2

þ4
o2

S

o2
b

� �
M 0

s

M 0
T

s2
4

3
5; ð69Þ

where o2
b ¼ Kb=M 0

T : In practical applications (L/RX10, R/hp100), it is readily shown that o2
S{o2

b; so that the two

natural frequencies in Eq. (69) become

o2
ð2ÞCo2

S ð70Þ
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o2
ð3ÞCo2

I ¼
Kb

M 0
T � M 0

S

¼
Kb

M 0
I

: ð71Þ

The denominator M 0
I ¼ M 0

T � M 0
S in Eq. (71) expresses the difference between the generalized total mass M 0

T and the

generalized sloshing mass M 0
S and can be regarded as a ‘‘generalized impulsive mass’’, analogous to mI defined in

Eq. (47). In such a case, the dynamic response of the coupled system is governed by two natural frequencies, namely the

sloshing frequency oS, which represents the motion of the liquid with respect to the vessel, and the ‘‘impulsive’’

frequency oI, given by Eq. (71), which represents the motion of the mass accelerating with the external source.

Following the definition of oI, which expresses the motion of the generalized impulsive mass M 0
I ; the damping

coefficient can be computed as follows:

Cb ¼ 2xboI M 0
I ; ð72Þ

where xb is the structural damping ratio.

Finally, it is noted that this simplified coupled formulation as expressed by Eqs. (64) and (66) can be employed for

approximating the coupled response of the fluid–vessel system for an arbitrary liquid depth of the horizontal cylinder,

provided that appropriate values for the sloshing mass mS and the sloshing frequency oS are employed. Calculation of

such values requires a numerical solution of the corresponding sloshing problem, and it is out of the scope of the present

study.

4. Response under harmonic excitation

The sloshing solution is significantly simplified and semi-analytical results are obtained when the container undergoes

a harmonic motion

’XðtÞ ¼ Ue�iot; ð73Þ

where U is the velocity amplitude, and o is the angular frequency of the external excitation source. Assuming steady

state conditions, functions ’qnðtÞ in Eq. (15) become

’qnðtÞ ¼ ane
�iot; ð74Þ

and the following infinite system of linear algebraic equations is obtained for an nondeformable (rigid) container:

ð�o2½M� þ ½K�Þfag ¼ �o2Ufgg; ð75Þ

which is analogous to Eqs. (21). In the above system, the square matrix [M], the diagonal matrix [K] and the vector {g}
are given by Eqs. (22)–(24), whereas {a} is the unknown vector with components a2n�1; n=1,2,3y . In the presence of

damping, the following set of algebraic equations are obtained:

ð�o2½M� � io½C� þ ½K�Þfag ¼ �o2Ufgg; ð76Þ

which is analogous to Eqs. (29). Note that when U ¼ 0 the system of algebraic equations (76) is reduced to a

homogeneous system (i.e. an eigenvalue problem), and its solution provides the sloshing frequencies and modes.

Furthermore, when U ¼ 0 and [C]=0 in Eqs. (76), the resulting eigenvalue problem is identical to the one obtained by

Evans and Linton (1993).

In nondeformable containers, an estimate of the externally induced sloshing effects on the overall response can be

obtained from the computation of the added mass coefficient Ca:

Ca ¼ Re
fS

fU þ fC

� �
; ð77Þ

where Re[ ] denotes the real part of the fS/( fU+fC) ratio. Furthermore, a measure of the dissipation mechanism is

offered by the dimensionless damping coefficient Cn:

Cn ¼ Im
fS

fU þ fC

� �
; ð78Þ

where Im[ ] denotes the imaginary part of the fS/( fU+fC) ratio.

In particular, assuming steady state conditions, the simplified sloshing formulation expressed by Eq. (38) results in

the following closed-form expressions for the sloshing potential j, the sloshing force fS and the Ca and the Cn
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coefficients:

jðr; y; tÞ ¼
l2

ð1� l2Þ � 2ilxS

1�
3pr

8R
cos y

� �
r sin ye�iot; ð79Þ

fS ¼ ðioÞmSU
o2

ðo2
S � o2Þ � 2ixSoSo

e�iot; ð80Þ

Ca ¼
1

2

l2ð1� l2Þ

ð1� l2Þ2 þ ð2lxSÞ
2
; ð81Þ

Cn ¼
1

2

2l3xS

ð1� l2Þ2 þ ð2lxSÞ
2
; ð82Þ

where l=o/oS.

In the case of deformable horizontal cylindrical containers under the formulation proposed in the previous section,

steady state conditions expressed by Eqs. (73) and (74) result in analytical expressions for qg(t), q(t) and D(t). More

specifically, in the absence of damping (xS=xb=0),

’qgðtÞ ¼
o2U

o2
S � o2

e�iot; ð83Þ

’qðtÞ ¼
MTo2

S � MIo2

D
o4Ue�iot; ð84Þ

’DðtÞ ¼ ðo2
S � o2Þ

MTo2
S � MIo2

D
o2Ue�iot; ð85Þ

where

D ¼ detð½K� � o2½M�Þ ¼ ðo2
S � o2Þ½ðo2

S � o2ÞðKb � o2M 0
T Þ � o4M 0

S�; ð86Þ

and

MI ¼ MT � MS ð87Þ

is a ‘‘generalized impulsive mass’’, analogous to M 0
I : The total horizontal force FT is obtained from Eq. (66):

FT ¼ ðioÞmT LUe�iot 1þ
mS

mT

o2

o2
S � o2

þ
MS

mT L
o4 MTo2

S � MIo2

D
þ

MT

mT L

MTo2
S � MIo2

D
o2ðo2

S � o2Þ
� �

: ð88Þ

Note that in the case of a nondeformable (rigid) vessel only the first two terms in the brackets are present, whereas the

remaining two terms in the brackets express the influence of the fluid–vessel interaction.

5. Results

The solution of the eigenvalue sloshing problem is presented first. Subsequently, the response of nondeformable half–

full cylindrical vessels under harmonic excitation and a seismic event is examined. Finally, the coupled response of the

fluid–vessel system is obtained and the significant effects of container deformation are demonstrated.

5.1. Sloshing frequencies and modes

The eigenvalue problem is studied, considering the solution of Eqs. (76), with U=0 (no external excitation). Due to

the nonorthogonality of the spatial functions the sloshing frequency values oj, j=1,2,y, in the present formulation

depend on the truncation size of the series expansion N. The convergence rate and the expected accuracy of the

eigenvalues are demonstrated numerically, increasing the value of truncation size N (npN in Eq. 16). In Fig. 4 the

variation of the first three normalized sloshing frequencies o
ffiffiffiffiffiffiffiffiffi
R=g

p
is presented in terms of the truncation size N for

zero dissipation. From the numerical point of view, the results indicate that the convergence rate is quite rapid, and that

faster convergence is obtained in lower sloshing frequencies. The required truncation size N to obtain accurate results

up to three significant figures for the first, second and third normalized eigenvalue is N=4, N=8 and N=12,

respectively. The values of the eigenfrequencies are in very good agreement with experimental results (Abramson, 1966),
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and other numerical or semi-analytical predictions (Budiansky, 1960; McIver and McIver, 1993). When damping is

present the eigenvalues of the system become complex because of energy dissipation effects. The convergence rate of the

real and imaginary parts of the complex eigenfrequencies of the damped system is similar to the corresponding

eigenfrequencies of the undamped system. In Fig. 5, sloshing modes corresponding to the first three frequencies are

depicted in terms of their free surface configuration. Furthermore, it is noted that the normalized value of

oSðoS

ffiffiffiffiffiffiffiffiffi
R=g

p
¼ 1:085Þ based on the simplified methodology (N=1) offers a reasonable approximation of the first

converged sloshing frequency o1ðo1

ffiffiffiffiffiffiffiffiffi
R=g

p
¼ 1:164Þ and can be used in practical engineering applications.

5.2. Response of rigid vessels under harmonic excitation

The response of rigid (nondeformable) half–full horizontal cylinders under harmonic transverse excitation can be

expressed in terms of the added mass coefficient Ca and the dimensionless damping coefficient Cn: The Ca and Cn values

are plotted in Figs. 6 and 7, respectively, in terms of the normalized external excitation frequency ðo2R=gÞ: Damping is

considered in the form of Eq. (30) with @0 equal to 0, 0.34 and 0.68 and @1=0. Fig. 6 shows that for the case of zero

damping, the response is characterized by large increases in the Ca value in the vicinity of resonant frequencies. There is

a sign reversal in Ca at each resonant frequency. When Cao0, the sloshing force fS is out-of-phase with the container

displacement (i.e. the ‘‘uniform motion’’ force fU), resulting in a reduction of the total force amplitude. The extreme

values of Ca close to the resonant frequencies are significantly reduced when damping is present, and the resonant effect

of the higher natural frequencies almost disappears. The large values of Ca for a wide range of excitation frequencies

indicate the significant effects of hydrodynamic sloshing on the overall response. Fig. 7 presents the corresponding

results for the dimensionless damping coefficient Cn: The Cn value exhibits a peak near the first resonant frequency, and

much smaller peaks for the higher resonant frequencies. When the damping parameter value is increased, the peaks

become smaller and smoother. The converged Ca values in the region of the dominant frequency o1 are compared in

Fig. 8 with those obtained from the simplified formulation [Eq. (81)]. The comparison shows a reasonable agreement

between the converged values of the horizontal cylinder and the values from the simplified methodology.

5.3. Transient response of rigid half–full horizontal cylinders

The efficiency of the proposed methodology to handle an arbitrary type of external excitation is demonstrated

calculating the response of a half–full rigid horizontal cylindrical vessel, under an irregular input function X(t). A half–

full vessel is considered, with radius R=1m and liquid density r=1000kg/m3, subjected to the El Centro seismic

ground motion (Fig. 9). Its length and its thickness are equal to L=6m and h=0.02m, respectively, so that it is

practically nondeformable. Therefore, the problem is two dimensional and the response is obtained from the solution of
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the linear system of Eqs. (29) implementing a fourth-order Runge–Kutta scheme in Matlab programming, where the

time step Dt is chosen equal to 0.020 s.

The dependence of the maximum value of the total force ðfT LÞmax on the truncation size N is presented in Table 1,

and shows that consideration of few terms of the series in the transverse direction (e.g. npN=5) is adequate to provide
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quite accurate results for engineering purposes. In addition, the simplified formulation (N=1) offers a fairly good

approximation of the converged ðfT LÞmax value.

Figs. 10(a), (b) and (c) show the uniform force fUL, the force associated with sloshing fSL and the total force fTL,

respectively for the cylindrical vessel under consideration, under the El Centro earthquake. The fS and fT values are

obtained with a truncation size N=8, and the maximum total force fTL is 29.4 kN (at 4.14 s). The results show that

sloshing force counteracts the uniform motion force and this is due to the fact that the dominant earthquake excitation

frequencies are significantly larger than the dominant sloshing frequency o1; so that fS is out-of-phase with fU.
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5.4. Dynamic analysis and seismic response of fluid–vessel system

The dynamic response of horizontal cylindrical pressure vessels under seismic loading is of particular importance in

petrochemical industry applications. Herein, a half–full VCM horizontal cylindrical container is examined. The radius,

thickness and the length are R=1m, h=0.01m and L=20m, respectively and the liquid has a density r=850 kg/m3.

The vessel is simply supported at z=0 and z=L, and a sinusoidal function c(z) is employed:

cðzÞ ¼ sin
pz

L

� �
: ð89Þ

Therefore, MS ¼ 0:637mSL;MT ¼ 0:637mT L;M 0
S ¼ 0:5mSL;M 0

T ¼ 0:5mT L;Kb ¼ 48:7EI=L3: The sloshing frequency

of the liquid oS is 3.40 rad/s. Furthermore, the values of oI and ob are 59 and 47 rad/s, respectively, significantly larger

than oS.

The vessel is subjected to the El Centro earthquake (Fig. 9). The response of the deformable vessel is shown in

Fig. 11(a), in terms of the total force FT, obtained from Eq. (66). The maximum value of FT is 109.92 kN, at 4.26 s.

Fig. 11(b) shows the response of the same half–full container considered as rigid (i.e. neglecting container wall

deformation). In such a case, the total force FT is calculated again from Eq. (66), neglecting the third and the fourth

term of the right-hand side, and the maximum value of FT is 71.26 kN at 13.83 s. The above values indicate clearly that

the total force on the wall of the deformable container is significantly higher than the corresponding total force on the
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Table 1

Convergence of the maximum value of the total force with respect to truncation size N; a0=0.34, a1=0, R=1m, L=6m, h=0.02m,

r=1000kg/m3, g=9.81m/s2

N ð fT LÞmax in kN

1 33.3

2 31.1

3 30.1

4 29.3

5 29.4

6 29.4

7 29.4

8 29.4
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wall of an equivalent rigid container. This difference is attributed to the amplification of ground motion, due to the

flexibility of the impulsive part of the system.

Figs. 12a and b depict the time variation of qg(t) and q(t) for the vessel under consideration, subjected to the El

Centro earthquake. The amplitude of qg(t) is significantly larger than the amplitude of q(t). This demonstrates the small

ARTICLE IN PRESS

0 10 20 30 40 50 60
-40

-30

-20

-10

0

10

20

30

40

Time [sec]

f U
L 

[k
N

]
f S

L 
[k

N
]

f T
L 

[k
N

]

(a)

0 10 20 30 40 50 60
-25

-20

-15

-10

-5

0

5

10

15

20

25

Time [sec](b)

0 10 20 30 40 50 60
-40

-30

-20

-10

0

10

20

30

40

Time [sec](c)

Fig. 10. Response of a half–full cylindrical vessel subjected to the El Centro earthquake in its transverse direction with damping
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influence of wall deformation on sloshing in horizontal cylinders, which is consistent with previous observations in

vertical cylindrical containers [e.g. Veletsos and Yang (1977); Fischer, (1979)].

6. Conclusions

A mathematical model is developed for externally induced liquid sloshing in half–full horizontal cylindrical

containers, in the transverse direction. In this configuration, the problem formulation is not separable and the general

solution of the sloshing potential is written as a series expansion of arbitrary time functions and its associated

nonorthogonal spatial functions. The formulation allows for a semi-analytical solution, results in a system of linear

ordinary differential equations, and enables the prediction of sloshing effects under any form of external excitation, in a

simple and efficient manner. A relatively small truncation of the series is adequate to provide good results. In the case of

harmonic excitation, the results are expressed in terms of the added force coefficient Ca and the dimensionless damping

coefficient Cn:
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Fig. 11. Total forces FT assuming (a) deformable container and (b) rigid container (N=1, xS=2%, xb=3%).
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Considering only the first two terms of the general solution, a simplified solution of the problem is obtained, which

results in closed-form expressions for the response under harmonic excitation. Despite its simplicity, this formulation

provides results of fairly good accuracy in comparison with the converged solution.

Finally, the effects of vessel wall deformation are examined. Considering the aforementioned simplified sloshing

solution and assuming a beam-type deformation of the horizontal cylinder, a coupled formulation is developed, which

approximates the dynamic response of the fluid–vessel system. Using this formulation, the dynamic response of a

deformable half–full vessel is obtained under a real seismic event. It is found that wall deformation may have a

considerable effect on the total seismic force, whereas the influence of wall deformation on sloshing is rather

insignificant.
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